
C++ Programming:

From Problem Analysis

to Program Design, Fourth Edition

Chapter 2: Basic Elements of C++

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 2

Objectives

In this chapter, you will:

• Become familiar with the basic components of

a C++ program, including functions, special

symbols, and identifiers

• Explore simple data types

• Discover how to use arithmetic operators

• Examine how a program evaluates arithmetic

expressions

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 3

Objectives (continued)

• Learn what an assignment statement is and

what it does

• Become familiar with the string data type

• Discover how to input data into memory using

input statements

• Become familiar with the use of increment

and decrement operators

• Examine ways to output results using output

statements

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 4

Objectives (continued)

• Learn how to use preprocessor directives and

why they are necessary

• Explore how to properly structure a program,

including using comments to document a

program

• Learn how to write a C++ program

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 5

The Basics of a C++ Program

• Function: collection of statements; when

executed, accomplishes something

− May be predefined or standard

• Syntax: rules that specify which statements

(instructions) are legal

• Programming language: a set of rules,

symbols, and special words

• Semantic rule: meaning of the instruction

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 6

Comments

• Comments are for the reader, not the compiler

• Two types:

− Single line
// This is a C++ program. It prints the sentence:

// Welcome to C++ Programming.

− Multiple line
/*

You can include comments that can

occupy several lines.

*/

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 7

Special Symbols

• Special symbols

+

-

*

/

.

;

?

,

<=

!=

==

>=

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 8

Reserved Words (Keywords)

• Reserved words, keywords, or word symbols

− Include:

• int

• float

• double

• char

• const

• void

• return

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 9

Identifiers

• Consist of letters, digits, and the underscore

character (_)

• Must begin with a letter or underscore

• C++ is case sensitive

− NUMBER is not the same as number

• Two predefined identifiers are cout and cin

• Unlike reserved words, predefined identifiers

may be redefined, but it is not a good idea

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 10

Identifiers (continued)

• The following are legal identifiers in C++:
− first

− conversion

− payRate

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 11

Whitespaces

• Every C++ program contains whitespaces

− Include blanks, tabs, and newline characters

• Used to separate special symbols, reserved

words, and identifiers

• Proper utilization of whitespaces is important

− Can be used to make the program readable

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 12

Data Types

• Data type: set of values together with a set of

operations

• C++ data types fall into three categories:

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 13

Simple Data Types

• Three categories of simple data

− Integral: integers (numbers without a decimal)

− Floating-point: decimal numbers

− Enumeration type: user-defined data type

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 14

Simple Data Types (continued)

• Integral data types are further classified into

nine categories:

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 15

Simple Data Types (continued)

• Different compilers may allow different ranges

of values

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 16

int Data Type

• Examples:

-6728

0

78

+763

• Positive integers do not need a + sign

• No commas are used within an integer

− Commas are used for separating items in a list

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 17

bool Data Type

• bool type

− Two values: true and false

− Manipulate logical (Boolean) expressions

• true and false are called logical values

• bool, true, and false are reserved words

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 18

char Data Type

• The smallest integral data type

• Used for characters: letters, digits, and special

symbols

• Each character is enclosed in single quotes

− 'A', 'a', '0', '*', '+', '$', '&'

• A blank space is a character and is written ' ',

with a space left between the single quotes

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 19

• C++ uses scientific notation to represent real

numbers (floating-point notation)

Floating-Point Data Types

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 20

Floating-Point Data Types

(continued)

− float: represents any real number

• Range: -3.4E+38 to 3.4E+38 (four bytes)

− double: represents any real number

• Range: -1.7E+308 to 1.7E+308 (eight bytes)

− On most newer compilers, data types double
and long double are same

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 21

Floating-Point Data Types

(continued)

• Maximum number of significant digits

(decimal places) for float values is 6 or 7

• Maximum number of significant digits for

double is 15

• Precision: maximum number of significant

digits

− Float values are called single precision

− Double values are called double precision

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 22

Arithmetic Operators and Operator

Precedence

• C++ arithmetic operators:

− + addition

− - subtraction

− * multiplication

− / division

− % modulus operator

• +, -, *, and / can be used with integral and

floating-point data types

• Operators can be unary or binary

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 23

Order of Precedence

• All operations inside of () are evaluated first

• *, /, and % are at the same level of
precedence and are evaluated next

• + and – have the same level of precedence
and are evaluated last

• When operators are on the same level

− Performed from left to right (associativity)

• 3 * 7 - 6 + 2 * 5 / 4 + 6 means
(((3 * 7) – 6) + ((2 * 5) / 4)) + 6

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 24

Expressions

• If all operands are integers

− Expression is called an integral expression

• Yields an integral result

• Example: 2 + 3 * 5

• If all operands are floating-point

− Expression is called a floating-point

expression

• Yields a floating-point result

• Example: 12.8 * 17.5 - 34.50

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 25

Mixed Expressions

• Mixed expression:

− Has operands of different data types

− Contains integers and floating-point

• Examples of mixed expressions:

2 + 3.5

6 / 4 + 3.9

5.4 * 2 – 13.6 + 18 / 2

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 26

Mixed Expressions (continued)

• Evaluation rules:

− If operator has same types of operands

• Evaluated according to the type of the operands

− If operator has both types of operands

• Integer is changed to floating-point

• Operator is evaluated

• Result is floating-point

− Entire expression is evaluated according to

precedence rules

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 27

Type Conversion (Casting)

• Implicit type coercion: when value of one type

is automatically changed to another type

• Cast operator: provides explicit type

conversion

static_cast<dataTypeName>(expression)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 28

Type Conversion (continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 29

string Type

• Programmer-defined type supplied in

ANSI/ISO Standard C++ library

• Sequence of zero or more characters

• Enclosed in double quotation marks

• Null: a string with no characters

• Each character has relative position in string

− Position of first character is 0

• Length of a string is number of characters in it

− Example: length of "William Jacob" is 13

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 30

Input

• Data must be loaded into main memory

before it can be manipulated

• Storing data in memory is a two-step process:

− Instruct computer to allocate memory

− Include statements to put data into memory

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 31

Allocating Memory with Constants

and Variables

• Named constant: memory location whose

content can’t change during execution

• The syntax to declare a named constant is:

• In C++, const is a reserved word

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 32

Allocating Memory with Constants

and Variables (continued)

• Variable: memory location whose content

may change during execution

• The syntax to declare a named constant is:

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 33

Putting Data into Variables

• Ways to place data into a variable:

− Use C++’s assignment statement

− Use input (read) statements

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 34

Assignment Statement

• The assignment statement takes the form:

• Expression is evaluated and its value is

assigned to the variable on the left side

• In C++, = is called the assignment operator

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 35

Assignment Statement (continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 36

Saving and Using the Value of an

Expression

• To save the value of an expression:

− Declare a variable of the appropriate data type

− Assign the value of the expression to the

variable that was declared

• Use the assignment statement

• Wherever the value of the expression is

needed, use the variable holding the value

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 37

Declaring & Initializing Variables

• Variables can be initialized when declared:

int first=13, second=10;

char ch=' ';

double x=12.6;

• All variables must be initialized before they

are used

− But not necessarily during declaration

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 38

Input (Read) Statement

• cin is used with >> to gather input

• The stream extraction operator is >>

• For example, if miles is a double variable

cin >> miles;

− Causes computer to get a value of type
double

− Places it in the variable miles

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 39

Input (Read) Statement (continued)

• Using more than one variable in cin allows

more than one value to be read at a time

• For example, if feet and inches are

variables of type int, a statement such as:

cin >> feet >> inches;

− Inputs two integers from the keyboard

− Places them in variables feet and inches

respectively

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 40

Input (Read) Statement (continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 41

Variable Initialization

• There are two ways to initialize a variable:

int feet;

− By using the assignment statement

feet = 35;

− By using a read statement

cin >> feet;

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 42

Increment & Decrement Operators

• Increment operator: increment variable by 1

− Pre-increment: ++variable

− Post-increment: variable++

• Decrement operator: decrement variable by 1

− Pre-decrement: --variable

− Post-decrement: variable—

• What is the difference between the following?

x = 5;

y = ++x;

x = 5;

y = x++;

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 43

Output

• The syntax of cout and << is:

− Called an output statement

• The stream insertion operator is <<

• Expression evaluated and its value is printed
at the current cursor position on the screen

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 44

Output (continued)

• A manipulator is used to format the output

− Example: endl causes insertion point to move

to beginning of next line

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 45

Output (continued)

• The new line character is '\n'

− May appear anywhere in the string

cout << "Hello there.";

cout << "My name is James.";

• Output:
Hello there.My name is James.

cout << "Hello there.\n";

cout << "My name is James.";

• Output :

Hello there.

My name is James.

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 46

Output (continued)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 47

Preprocessor Directives

• C++ has a small number of operations

• Many functions and symbols needed to run a

C++ program are provided as collection of

libraries

• Every library has a name and is referred to by a

header file

• Preprocessor directives are commands

supplied to the preprocessor

• All preprocessor commands begin with #

• No semicolon at the end of these commands

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 48

Preprocessor Directives

(continued)

• Syntax to include a header file:

• For example:

#include <iostream>

− Causes the preprocessor to include the
header file iostream in the program

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 49

namespace and Using cin and

cout in a Program

• cin and cout are declared in the header file

iostream, but within std namespace

• To use cin and cout in a program, use the

following two statements:

#include <iostream>

using namespace std;

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 50

Using the string Data Type in a

Program

• To use the string type, you need to access

its definition from the header file string

• Include the following preprocessor directive:

#include <string>

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 51

Creating a C++ Program

• C++ program has two parts:

− Preprocessor directives

− The program

• Preprocessor directives and program

statements constitute C++ source code (.cpp)

• Compiler generates object code (.obj)

• Executable code is produced and saved in a

file with the file extension .exe

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 52

Creating a C++ Program

(continued)

• A C++ program is a collection of functions,
one of which is the function main

• The first line of the function main is called the
heading of the function:

int main()

• The statements enclosed between the curly
braces ({ and }) form the body of the function

− Contains two types of statements:

• Declaration statements

• Executable statements

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 53

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 54

Creating a C++ Program

(continued)

Sample Run:

Line 9: firstNum = 18

Line 10: Enter an integer: 15

Line 13: secondNum = 15

Line 15: The new value of firstNum = 60

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 55

Program Style and Form

• Every C++ program has a function main

• It must also follow the syntax rules

• Other rules serve the purpose of giving

precise meaning to the language

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 56

Syntax

• Errors in syntax are found in compilation

int x; //Line 1

int y //Line 2: error

double z; //Line 3

y = w + x; //Line 4: error

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 57

Use of Blanks

• In C++, you use one or more blanks to

separate numbers when data is input

• Used to separate reserved words and

identifiers from each other and from other

symbols

• Must never appear within a reserved word or

identifier

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 58

Use of Semicolons, Brackets, and

Commas

• All C++ statements end with a semicolon

− Also called a statement terminator

• { and } are not C++ statements

• Commas separate items in a list

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 59

Semantics

• Possible to remove all syntax errors in a

program and still not have it run

• Even if it runs, it may still not do what you

meant it to do

• For example,

2 + 3 * 5 and (2 + 3) * 5

are both syntactically correct expressions, but

have different meanings

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 60

Naming Identifiers

• Identifiers can be self-documenting:

− CENTIMETERS_PER_INCH

• Avoid run-together words :

− annualsale

− Solution:

• Capitalize the beginning of each new word

• annualSale

• Inserting an underscore just before a new word

• annual_sale

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 61

Prompt Lines

• Prompt lines: executable statements that

inform the user what to do

cout << "Please enter a number between 1 and 10 and "

<< "press the return key" << endl;

cin >> num;

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 62

Documentation

• A well-documented program is easier to

understand and modify

• You use comments to document programs

• Comments should appear in a program to:

− Explain the purpose of the program

− Identify who wrote it

− Explain the purpose of particular statements

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 63

Form and Style

• Consider two ways of declaring variables:

− Method 1

int feet, inch;

double x, y;

− Method 2

int a,b;double x,y;

• Both are correct; however, the second is hard

to read

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 64

More on Assignment Statements

• C++ has special assignment statements

called compound assignments

+=, -=, *=, /=, and %=

• Example:

x *= y;

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 65

Programming Example:

Convert Length

• Write a program that takes as input a given

length expressed in feet and inches

− Convert and output the length in centimeters

• Input: length in feet and inches

• Output: equivalent length in centimeters

• Lengths are given in feet and inches

• Program computes the equivalent length in

centimeters

• One inch is equal to 2.54 centimeters

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 66

Programming Example: Convert

Length (continued)

• Convert the length in feet and inches to all

inches:

− Multiply the number of feet by 12

− Add given inches

• Use the conversion formula (1 inch = 2.54

centimeters) to find the equivalent length in

centimeters

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 67

Programming Example: Convert

Length (continued)

• The algorithm is as follows:

− Get the length in feet and inches

− Convert the length into total inches

− Convert total inches into centimeters

− Output centimeters

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 68

Programming Example: Variables

and Constants

• Variables
int feet; //variable to hold given feet

int inches; //variable to hold given inches

int totalInches; //variable to hold total inches

double centimeters; //variable to hold length in

//centimeters

• Named Constant

const double CENTIMETERS_PER_INCH = 2.54;

const int INCHES_PER_FOOT = 12;

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 69

Programming Example: Main

Algorithm

• Prompt user for input

• Get data

• Echo the input (output the input)

• Find length in inches

• Output length in inches

• Convert length to centimeters

• Output length in centimeters

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 70

Programming Example: Putting It

Together

• Program begins with comments

• System resources will be used for I/O

• Use input statements to get data and output

statements to print results

• Data comes from keyboard and the output

will display on the screen

• The first statement of the program, after

comments, is preprocessor directive to
include header file iostream

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 71

Programming Example: Putting It

Together (continued)

• Two types of memory locations for data

manipulation:

− Named constants

• Usually put before main

− Variables

• This program has only one function (main),

which will contain all the code

• The program needs variables to manipulate
data, which are declared in main

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 72

Programming Example: Body of

the Function

• The body of the function main has the

following form:

int main ()

{

declare variables

statements

return 0;

}

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 73

Programming Example: Writing a

Complete Program

• Begin the program with comments for

documentation

• Include header files

• Declare named constants, if any

• Write the definition of the function main

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 74

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 75

Programming Example: Sample

Run

Enter two integers, one for feet, one for inches: 15 7

The numbers you entered are 15 for feet and 7 for inches.

The total number of inches = 187

The number of centimeters = 474.98

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 76

Summary

• C++ program: collection of functions where
each program has a function called main

• Identifier consists of letters, digits, and

underscores, and begins with letter or

underscore

• The arithmetic operators in C++ are addition

(+), subtraction (-),multiplication (*), division (/),

and modulus (%)

• Arithmetic expressions are evaluated using the

precedence associativity rules

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 77

Summary (continued)

• All operands in an integral expression are

integers and all operands in a floating-point

expression are decimal numbers

• Mixed expression: contains both integers and

decimal numbers

• Use the cast operator to explicitly convert

values from one data type to another

• A named constant is initialized when declared

• All variables must be declared before used

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 78

Summary (continued)

• Use cin and stream extraction operator >> to

input from the standard input device

• Use cout and stream insertion operator <<

to output to the standard output device

• Preprocessor commands are processed

before the program goes through the

compiler

• A file containing a C++ program usually ends
with the extension .cpp

